

SCHEDA DELL'INSEGNAMENTO (SI)

"TECNICHE SPECIALI IN CHIMICA BIOORGANICA"

SSD CHIM/06

DENOMINAZIONE DEL CORSO DI STUDIO: CORSO DI LAUREA TRIENNALE IN BIOTECNOLOGIE PER LA SALUTE

ANNO ACCADEMICO 2021-2022

INFORMAZIONI GENERALI - DOCENTE

DOCENTE: MONICA TERRACCIANO

TELEFONO: 081678521

EMAIL: MONICA.TERRACCIANO@UNINA.IT

INFORMAZIONI GENERALI - ATTIVITÀ

ANNO DI CORSO: II

SEMESTRE: II

CFU: 5

INSEGNAMENTI PROPEDEUTICI (se previsti dall'Ordinamento del CdS)

Nessuno

EVENTUALI PREREQUISITI

Nozioni acquisite con lo studio della chimica generale ed organica

OBIETTIVI FORMATIVI

L'insegnamento si propone di fornire agli studenti le basi per una adeguata comprensione di alcune tecniche per la purificazione e caratterizzazione chimico-fisica di macromolecole e nanocomplessi per applicazioni biotecnologiche.

RISULTATI DI APPRENDIMENTO ATTESI (DESCRITTORI DI DUBLINO)

Conoscenza e capacità di comprensione

Grazie a numerosi esempi applicativi di analisi, gli studenti apprenderanno: i principi alla base di alcune tecniche sperimentali utilizzate per la caratterizzazione di bio/nano-complessi in ambito biotecnologico, le modalità di funzionamento di strumentazione di laboratorio e metodi sperimentali per effettuare correttamente le misurazioni.

Capacità di applicare conoscenza e comprensione

Gli studenti saranno in grado di padroneggiare le particolarità di ciascuna tecnica di caratterizzazione studiata, sapendo suggerire quale sia la tecnica migliore e il protocollo sperimentale adeguato alla caratterizzazione di macromolecole e nanocomplessi.

PROGRAMMA

- Introduzione generale alla purificazione e caratterizzazione chimico-fisica di macromolecole e nanocomplessi. Utilità delle tecniche presentate nel corso. Descrizione degli obiettivi, metodi di insegnamento e di verifica. Richiami dei concetti di base della chimica organica.
- Tecniche di purificazione di macromolecole:
 - Cromatografia: principi generali, meccanismi cromatografici, tecniche cromatografiche (cromatografia liquida ad alta prestazione, HPLC).
- Tecniche di identificazione e caratterizzazione mediante spettroscopia:
 - Spettroscopia di assorbimento UV-vis: principi generali, analisi qualitativa e quantitativa, legge dell'assorbimento (legge di Lambert-Beer) e la sua applicabilità.
 - o Spettrofluorimetria: principi generali, cromofori e fluorescenza, analisi qualitativa e quantitativa.
 - Spettroscopia a correlazione di fotoni (DLS): principi generali, teoria della diffusione della luce, determinazione della dimensione (size) e del potenziale di superficie (zeta-potential).
 - Spettroscopia di risonanza magnetica nucleare (NMR): principi generali, 1H NMR, spostamento chimico, integrazione dei segnali, l'accoppiamento di spin, spettri del primo ordine, analisi di alcuni sistemi di spin semplici.
- Tecniche di caratterizzazione morfologica mediante microscopia:
 - microscopia a forza atomica (AFM), microscopia a scansione elettronica (SEM), microscopia a trasmissione elettronica (TEM): principi generali, interazione elettroni materia, rivelazione dei segnali, generazione dell'immagine.

MATERIALE DIDATTICO

Slide delle lezioni disponibili on-line previa iscrizione al corso alla pagina http://www.docenti.unina.it/monica.terracciano

MODALITÀ DI SVOLGIMENTO DELL'INSEGNAMENTO

Lezioni frontali.

VERIFICA DI APPRENDIMENTO E CRITERI DI VALUTAZIONE

a) Modalità di esame:

L'esame si articola in prova	
scritta e orale	
solo scritta	
solo orale	×
discussione di elaborato progettuale	
altro	